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Abstract Shared autonomous (fully-automated) vehicles (SAVs) represent an emerging

transportation mode for driverless and on-demand transport. Early actors include Google

and Europe’s CityMobil2, who seek pilot deployments in low-speed settings. This work

investigates SAVs’ potential for U.S. urban areas via multiple applications across the

Austin, Texas, network. This work describes advances to existing agent- and network-

based SAV simulations by enabling dynamic ride-sharing (DRS, which pools multiple

travelers with similar origins, destinations and departure times in the same vehicle),

optimizing fleet sizing, and anticipating profitability for operators in settings with no speed

limitations on the vehicles and at adoption levels below 10 % of all personal trip-making in

the region. Results suggest that DRS reduces average service times (wait times plus in-

vehicle travel times) and travel costs for SAV users, even after accounting for extra

passenger pick-ups, drop-offs and non-direct routings. While the base-case scenario

(serving 56,324 person-trips per day, on average) suggest that a fleet of SAVs allowing for

DRS may result in vehicle-miles traveled (VMT) that exceed person-trip miles demanded

(due to anticipatory relocations of empty vehicles, between trip calls), it is possible to

reduce overall VMT as trip-making intensity (SAV membership) rises and/or DRS users

become more flexible in their trip timing and routing. Indeed, DRS appears critical to

avoiding new congestion problems, since VMT may increase by over 8 % without any

ride-sharing. Finally, these simulation results suggest that a private fleet operator paying

$70,000 per new SAV could earn a 19 % annual (long-term) return on investment while

offering SAV services at $1.00 per mile for a non-shared trip (which is less than a third of

Austin’s average taxi cab fare).
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Introduction

As vehicle automation continues to advance, one of the more promising opportunities is the

concept of shared fully-automated vehicles (SAVs). This concept transforms the notion of

travel in most developed countries from one that is largely by privately held personal

vehicles to fleet services by driverless, demand-responsive vehicles, shared (or for hire)

across a mix of users. Low-speed (25 mi/h maximum) 12-passenger SAV deployments are

underway in Europe, through the CityMobil2 project; and Google has its intention of

deploying a fleet of low-speed 2-passenger SAVs (Markoff 2014). While these pilot

demonstrations are speed-limited, technological progress suggests they will ultimately

travel anywhere a conventional non-automated vehicle can go.

This work builds on Fagnant and Kockelman’s (2014a, b), investigations of SAV

operations using an agent-based simulation framework for an idealized city and then across

Austin, Texas’ coded network. Their latter work uses MATSim-estimated travel times to

reflect the dynamic nature of congestion in the region, and mimics the region’s highly

heterogeneous travel patterns, to anticipate SAV system implications for various shares of

travelers who had previously traveled using other modes (mostly private automobile).

The extended model and simulations used here allow for dynamic ride-sharing (DRS), and

deliver a benefit-cost analysis for fleet operators, including optimal fleet sizing. DRS allows for

on-demand carpooling, for travelers with similar or overlapping paths across both time and

space. The new framework allows those willing to share rides to be linked in the same SAV, if

their preference requirements are all met. Thus, SAVs can now both pick up multiple travelers

at the same node if their destinations are in the same direction, or match travelers at new nodes

while the SAV is en-route, as long as single-occupant travel times are not overly compromised.

While DRS has been examined previously as a type of automated taxi (aTaxi) paradigm,

several salient features distinguish this work from past efforts. For example, Maciejewski and

Nagel (2012) used multiple pick-up and drop-off locations, but their simulation was limited in

scale, since they sought to evaluate nearly all service combinations. As a result, simulation times

increased by a factor of 100 when moving from 100 customers with 1 depot to 1000 customers

with 10 depots.With thousands of nodes and tens of thousands of customers, as needed in city-

wide settings and as used here, their approach is not feasible for large-scale applications.

Kornhauser et al. (2013) took a different tack: after obtaining an occupant, each aTaxi

simply waits a specified time before departing, to match person-trips with the same origin

and nearly the same or directly-en-route destinations. While this approach enjoys opera-

tional simplicity, and may reduce vehicle diversion times (to pick up and/or drop off other

travelers), much may be gained when serving other travelers along the way (and off the

direct routing), particularly at already scheduled drop-off stops.

Jung et al. (2013) developed an innovative DRS scheme, using hybrid simulated

annealing (SA), which assigns an initial state of vehicle matches (for example, nearest-

vehicle dispatch) and then randomly perturbs vehicle-traveler match decisions to see if the

solution can be improved. While this current work may be improved by incorporating the

SA method, the approach used here (described below) enjoys certain advantages, pre-

dominantly in the area of anticipatory SAV relocation.

Agatz et al. (2011) examined DRS by seeking to minimize total (system-wide) VMT

and allowing a substantial 20-min departure-time window, dramatically improving ride-
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share matches. In contrast, the DRS methodology described here bins departure times into

5-min intervals, for relatively inflexible desired departure times (according to the departing

traveler’s preference). As such, lower wait times take greater priority than system-wide

VMT reductions.

The simulation setting

The Capital Area Metropolitan Planning Organization’s (CAMPO) regional (6-county)

coded roadway network and year-2010 trip tables were used to estimate SAV travel

patterns and operational impacts in the Austin area. The network serves 2258 traffic

analysis zones (TAZs), across 5300 square miles, with centroid nodes located at the center

of each TAZ, from which all trips originate and end. Centroid connectors link these zone

centroids to the rest of the region’s coded network, comprised of 13,594 nodes and 32,272

links (including connectors).

A synthetic population of (one-way) trips was generated using the zone-based personal

(non-commercial) trip tables, for four times of day: 6 a.m.–9 a.m. for the morning peak, 9

a.m.–3:30 p.m. for mid-day, 3:30 p.m.–6:30 p.m. for an afternoon peak, and 6:30 p.m.–6

a.m. for nighttime conditions. CAMPO’s regional trip tables were used, and Seattle,

Washington’s 2006 household travel diaries (Puget Sound Regional Council 2006) were

for departure time distributions, to map to each of the four times of day. These origin–

destination-departure time trip sets (containing 4.5 million trips) were then input into

MATsim simulation software (MATSim 2013) to evaluate existing roadway travel con-

ditions across a full (24-h) weekday. MATSim operates by simulating each trip across the

road network, using a dynamic traffic assignment methodology to route individual vehicles

from origin to destination. These simulation results were used to estimate average travel

speeds across the network, for every hour of the day.

A 100,000-trip subset was then randomly drawn, with 57,161 of these travelers having

both origins and destinations with a centrally located 12-mile by 24-mile ‘‘geofence’’. The

geofence contains approximately 44 % of the region’s network links, with a network density

of 49.6 links per square mile. This 57,161-trip sample represents just 1.3 % of the 6-county

region’s internal trip-making, and seeks to represent a set of early SAV adopters across a core

set of 734 TAZs (32.5 % of the 6-region’s total). Travelers originate from and journey to the

region’s TAZ centroids, meaning that each centroid effectively acts as an SAV pick-up and

drop-off station. While future SAVs may be able to serve many more stations within the

evaluation area than modeled here (e.g., wherever there is ample curb space), this approx-

imation is applied to the simulation setting here. All trips with origins or destinations outside

the geofence are assumed to rely on alternative travel modes. Figure 1a shows Austin’s

regional network and geofence, Fig. 1b shows the geofence area in greater detail, and Fig. 1c

shows the density of those trip origins, at half-mile-cell resolution, within 2-mile (outlined)

blocks, and with darker shades denoting higher trip intensities.

Model specification and operations

Once the hourly travel times and trip patterns were in hand, an agent-based micro-simu-

lation model was used to build an SAV fleet to ferry those trip-makers from their origins to

destinations over the course of a 24-h day. This model is coded in C??, and uses four
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primary (non-DRS) modules, including an SAV location and trip assignment module, SAV

fleet generation module, SAV movement module, and SAV relocation module. In each of

these modules, three sets of actors handle various aspects of the operation: travelers who

place requests to a fleet manager and get on and off SAVs, the fleet manager which assigns

traveler-SAV pairings and issues relocation commands to SAVs (in anticipation of waiting

and future demand), and the individual SAVs that set their route paths and journey

throughout the network serving the traveler population.

The first module acts by using the fleet manager to assign waiting travelers to the

nearest SAV, with a first-in-first-out (FIFO) scheme to prioritize those who have been

waiting longest. Travel demand or trips are grouped into 5-min bins for vehicle assignment

purposes, and each person looks 5-min out to see if they could find an available SAV.

Travelers who wait 5 or more minutes to access an SAV must expand their search to a

10-min radius. SAV paths are computed using a backward-modified Dijkstra’s algorithm

(Bell and Iida 1997) to determine the shortest time-dependent route for an SAV to reach

each assigned traveler (and then his/her destination). This process serves as a heuristic for

minimizing traveler wait times, with special emphasis on minimizing long waits, while

providing an exact solution for minimized in-vehicle travel times.

An SAV ‘‘seed’’ day is run prior to all simulations in order to generate an adequately

sized SAV fleet, to ensure that no traveler in the seed simulation will wait more than

10 min and still not find an available SAV within a 10-min radius. At the end of the seed

day, this starting fleet size is assumed fixed, and the vehicles’ final locations are used for

the start of the subsequent day.

The model tracks SAV movements by noting each vehicle’s location, future path steps

to reach the target destination(s), and distance to the next node for each SAV (if an SAV

ends a given 5-min period between nodes), along with all hour-dependent link-level travel

times. During each 5-min time step, SAVs move across the network, picking up and

dropping off travelers (both of which incur a 1-min time cost, to enable passenger baggage

handling, seat belting, and so forth).

SAV relocations (between trip requests) are also often valuable, due to supply–demand

imbalances over space and time. For example, SAVs may take more travelers from the

geofence periphery to the central business district during the AM peak, resulting in longer

Fig. 1 a Regional transportation network, b nework within the 12 mi 9 24 mi geofence, c distribution of
trip origins (over 24-h day, at �-mile resolution)

146 Transportation (2018) 45:143–158

123



www.manaraa.com

wait times for new travelers originating in the outer areas, with excess SAVs lingering in

the urban core. Thus, some advance relocation is handy. However, demand-anticipatory

relocations can also result in more unoccupied (empty-SAV) VMT, so ideal relocation

efforts strike a balance, between lower wait times and lower (empty) VMT.

To achieve this balance, the fleet manager uses a 2-mile by 2-mile block-based com-

parison of the share of currently waiting travelers plus soon expected travelers (in the next

5 min) versus the supply of unoccupied, stationary SAVs in each block. If a given block

has 5 % of the all free SAVs and 5 % of expected demand, it is in perfect balance. If a

block’s supply exceeds its expected demand or vice versa, by 5 or more SAVs, system

rules push or pull unoccupied SAVs to or from adjacent blocks, prioritizing shifts to blocks

exhibiting complementary imbalances. Additional details regarding these relocations, as

well as the SAV user population, Austin network, geofence and model operations can be

found in Fagnant and Kockelman (2014b).

Dynamic ride-sharing

To improve the model’s capabilities, DRS opportunities were introduced, allowing two or

more independent travelers to share a single SAV, provided that neither traveler is overly

inconvenienced. DRS has significant potential for SAVs applications (vs. carpooling with

household-owned vehicles). Travelers can rely on a fleet manager to handle the burden of

traveler matching, and SAV per-mile cost savings will likely be greater, since the vehicle’s

capital costs can be incorporated into SAV pricing, but are considered sunk costs if using a

household-owned car.

The SAV search process was modified to allow travelers to access SAVs that are

currently occupied or claimed by other trip-makers. Potential ‘‘handoffs’’ were also

evaluated, to see whether any occupied SAVs could drop off current passengers and then

pick up the waiting traveler sooner than other (presently empty) SAVs. These handoffs

were not considered true shared rides, which were prioritized if a valid match was found. If

the claimed or occupied SAV is the nearest SAV to the new traveler, a series of conditions

are checked to determine whether the ride should/will be shared:

1. Current passengers’ trip duration increases B20 % (total trip duration with ride-

sharing vs. without ride-sharing); and

2. Current passengers’ remaining trip time increases B40 %; and

3. New traveler’s total trip time increase grows by B Max(20 % total trip without ride-

sharing, or 3 min); and

4. New travelers will be picked up at least within the next 5 min; and

5. Total planned trip time to serve all passengers B remaining time to serve the current

trips ? time to serve the new trip ? 1 min drop-off time, if not pooled.

While some of these conditions appear to overlap, each is important in its own right. For

example, Condition 1 is the base setting, ensuring that travelers currently in SAVs are not

overly burdened with added travel time. In other words, this condition ensures that their

decision to share a ride is not excessively costly. Condition 2 prevents travelers who are

nearly at their destination from suddenly diverting relatively far out of their way to serve

another traveler. Condition 3 takes the new traveler’s perspective, to ensure that this

particular SAV is worth claiming. Condition 4 deals with the dynamic nature of travel:

after 5 min many SAVs, if not most, will have moved from their current location and
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another one may be preferred. Finally, Condition 5 ensures that the trip should be matched

from a system perspective. It prevents a short trip from being matched to a longer trip in an

opposing direction trip that may satisfy the first four conditions. For example, consider a

40-min northbound trip paired with a 3-min southbound trip, both departing from the same

node. If the southbound trip is served first, it will add 7 min to the northbound trip

(including drop-off), would be an unwise ride-sharing decision, but nonetheless be mat-

ched without Condition 5.

All combinations of pick-ups and drop-offs for potential trip matches are tested in this

way, though not all combinations are considered valid. Same node pick-ups and drop-offs

must be concurrent in time, and each traveler must be picked up before he/she can be

dropped off. Multiple travelers may simultaneously exit and/or enter an SAV at a given

node. If multiple pick-up/drop-off combination orderings are valid for a shared ride, the

earliest final drop-off time combination is chosen.

A day in the life of an SAV

To better understand the model operation, an example SAV was tracked throughout an

entire 24-h day, with Fig. 2 illustrating its operation in three parts. The first diagram

(Fig. 2a, upper left) illustrates pick-up and drop-off locations and their ordering, as the

SAV travels from one location to the next. Line-weights depict the SAV’s occupancy, with

the thinnest line-type denoting no occupants, the medium depicting one occupant, and the

heaviest holding two persons. Figure 2b (upper right image) shows the actual network

links used to travel between locations, and Fig. 2c (lower bar chart) depicts the SAV’s 24-h

utilization timeline, showing 5-min periods for when it was moving, picking up, and/or

dropping off. Numbers corresponding to visited nodes (i.e., ordered locations) are also

shown on the timeline, to better illustrate this SAV’s spatial and temporal path over the

course of a day.

This particular SAV began its operation at 4:40 am and ended by 7:40 pm. It served 31

person-trips and was ‘‘in use’’ for approximately 8.08 h of the day.1 During this time the

SAV was either carrying passengers (for about 6.71 h), relocating itself (about 0.33 h), or

spending 1 min picking up and 1 min dropping off each traveler it carried (for 1.03 h

total). While there were still a number of trips to be served after this SAV completed its

day (around 8 % of the daily total), the fleet size (1715 SAVs to serve 56,324 person-trips)

was large enough that this SAV was not needed.

Among the 31 total trips served by this example SAV, trip durations varied from 5 to

50 min, and averaged 16 min (including pick-up and drop-off times of 1 min each). Just

three trips were shared: two between 7 and 8 a.m., and one between 5 and 6 p.m., with

shared times lasting less than 10 min per trip. Two ‘‘rebalancing’’ relocations occurred,

including the final trip movement and one just before 7 a.m. Finally, of the 31 person-trips,

five involved minor unoccupied relocations, to move the vehicle from the SAVs’ previous

drop-off location to a new pick-up location. It was able to remain in place for the other 26

pickups.

1 This SAV was used during 97 of the 24-hour day’s 288 5-minute intervals, or for 8 h and 5 minutes. It was
also stationary for a portion of some of these 97 intervals, when travelers were dropped off early in the
interval, but the SAV had not yet been assigned to another traveler.
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Model application and results

A total fleet size of 1715 SAVs was generated during the seed day in order to serve the

56,324 person-trips. Assuming an average of 3.02 person-trips per day and 0.99 licensed

drivers per conventional vehicle, as shown in the U.S.’s National Household Travel Survey

(NHTS) of 2009 (Federal Highway Administration 2009), each SAV in this (range-lim-

ited/geofenced) scenario could potentially replace around 10.77 conventional vehicles,

12
:0

0 
AM

1:
00

 A
M

2:
00

 A
M

3:
00

 A
M

4:
00

 A
M

5:
00

 A
M

6:
00

 A
M

7:
00

 A
M

8:
00

 A
M

9:
00

 A
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

3:
00

 P
M

4:
00

 P
M

5:
00

 P
M

6:
00

 P
M

7:
00

 P
M

8:
00

 P
M

9:
00

 P
M

10
:0

0 
PM

11
:0

0 
PM

Dropoff

Pickup

Travel

1

10 19

29 32

42

(a)

(b)

Fig. 2 Sample SAV 24-h travel pattern a node origin and destination ordering, b network link utilization
and traveler origin and destination locations, and c SAV travel timeline

Transportation (2018) 45:143–158 149

123



www.manaraa.com

assuming similar demand patterns before SAVs are introduced. Wait times averaged just

1.18 min (beyond the average 2.5 min associated with the clustering of incoming trip

requests to 5-min intervals and possible walk times to stations), with 98.6 % of travelers

waiting 10 min or less, and average wait times of 4.49 min during the peak hour (5 p.m.–6

p.m.).

While this paradigm appears socially beneficial in terms of replacing many conventional

vehicles with a much smaller fleet of SAVs, it comes with some costs in terms of extra (i.e.,

empty-) VMT, even with DRS enabled. Total added VMT2 remains positive at 4.5 %, with

just 6152 ride-sharing matches out of 56,324 trips occurring on this low-trip-share simu-

lation (and with just 4.83 % of total VMT having 2 or more occupants). Almost all shared

trips occurred between two persons, with 15,623 VMT (per day) covered by two-person-

occupied vehicles, versus 393 VMT covered by 3-person occupancies and 9 VMT

occurring via 4-person ride-shares (per day, on average). As SAV fleets capture greater

market share (e.g., 10, 20 %, or even 90 % of trip-making in the served region/geofence,

versus the 1.3 % modeled here), presumably much more opportunity will exist for shared

rides (thanks to more frequent match-making). Of course, there is also excess driving

beyond simple origin-to-destination travel associated with non-shared vehicles. Many

drivers incur extra travel searching for parking, and/or park a block or two from their

intended destinations (see, e.g., Shoup 2007).

Higher per-mile shared-vehicle marginal costs (as compared to per-mile marginal costs

for household-owned vehicles) may also reduce overall VMT. In a privately-owned

household-vehicle setting, ownership costs are paid up front. In contrast, ownership costs

are embedded in an SAV’s rental price, raising marginal per-mile travel costs, and thus

potentially reducing demand. On the other hand, the added ease of motorized travel may

push overall demand upwards, undercutting transit, high-occupancy (privately-owned)

vehicles, and non-motorized mode choices. Roadway pricing or other demand-manage-

ment policies may well be needed, to avoid excessive AV use and worsened roadway

congestion.

Scenario variations

Following the base model’s simulation run, a series of alternative scenarios were simu-

lated, testing the implications of various fleet sizes, DRS implementations, and travel

demand settings. Three major scenarios types were tested, including a same-sized non-

DRS SAV fleet of 1715 vehicles (for direct comparison with the DRS-enabled fleet),

allowing a maximum of 30 or 40 % total increased travel time for the first and third DRS

conditions noted above (up from the base case assumption of 20 %), and varying total trip-

making demands. Table 1 shows results for fleet size limitations and higher allowable DRS

travel time scenarios.

A fourth scenario type was also conducted, using mixed shares of DRS-willing and non-

DRS-willing travelers, with results suggesting that outcomes (in terms of shared rides,

system-wide VMT, wait times, etc.) are roughly quadratic in the share of travelers willing

to use DRS. That is, each DRS-willing traveler must be able to find another DRS-willing

2 Added VMT reflects extra (unoccupied) travel by SAVs, and reflects travel reductions due to DRS. Total
added VMT is calculated by comparing the amount of travel in a given scenario to the amount of travel for
the exact same population, if every person were driving a personal vehicle directly from his/her origin to his/
her destination.
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traveler in order to share a ride, and this becomes increasingly easy as the proportion of

DRS-willing travelers grows. However, with substantial market penetration growth, some

saturation point may be eventually be reached, potentially resulting in falling DRS

matching rates on a per-traveler basis, though the absolute number of shared rides would

presumably continue to grow. Additional results regarding these scenarios can be found in

Fagnant (2014).

Same-sized fleets for DRS and non-DRS scenarios

In comparing the DRS vs. non-DRS scenarios, it is apparent that system operation

improves when 11 % of trips (but less than 5 % of VMT) are shared. Fleet-wide added

travel (compared to the same number of trips served by privately-held, household vehicles)

can be cut by 43 %. Wait times also fall (including the share of longer wait periods),

though total service time (from pick-up request to final trip drop-off time) increase only

slightly, from 14.71 to 14.97 min per person-trip. This implies that in-vehicle travel time is

likely being substituted for out-of-vehicle wait time at a ratio of approximately 0.6:1 when

using DRS.

Higher DRS travel time tolerances

Two other scenarios examined the impacts of adjusting ride-matching parameter settings.

The added maximum amount of time that any ride-sharing traveler would have to spend

(from initial SAV request, to his/her final drop-off at destination—under DRS conditions 1

and 3) in the base-case scenario was 20 %. This parameter was increased to 30 % and then

40 %, to appreciate its operational effects. Results suggest that changing the maximum

from 20 to 30 % yielded significant benefits at relatively low cost, in terms of total service

times (wait time plus travel time), while the change from 30 to 40 % (extra travel time)

produced only minor benefits, at much higher cost. For example, the first increase (from 20

to 30 %) reduced the amount of extra or empty-SAV VMT by 4.4 miles (per new/added

shared-trip) at a cost of 8.9 min of added total service time per new shared-trip,3 while also

Table 1 Austin network-based model results across various scenarios (serving 56,324 person-trips over
24 h)

Measure With DRS Without DRS ?30 % DRS trav. time ?40 % DRS trav. time

# SAVs 1715 1715 1643 1601

Vehicle replacement rate 10.77 10.77 11.24 11.53

Extra VMT 4.49 % 8.68 % 2.67 % 1.52 %

Avg. wait time (min.) 1.18 1.87 1.27 1.37

Avg. PM peak wait (min.) 4.49 8.96 4.82 4.99

Avg. total service (min.) 14.71 14.97 15.20 15.69

% Waiting C 10 min 1.45 % 5.65 % 1.71 % 1.90 %

% Waiting C 15 min 0.22 % 2.08 % 0.27 % 0.43 %

# Shared trips 6151 0 9233 11,723

% Shared miles 4.83 % 0.00 % 8.32 % 11.20 %

3 New shared-trips are the rise in the number of trips shared over the average simulated day, not whole new
person-trips.
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shrinking the SAV fleet size by 72 vehicles, or 4.2 %. A fleet operator may find this trade-

off of lower fleet size and VMT for higher passenger total travel times reasonable, and wish

to use a 30 % assumption. When increasing the maximum extra travel time ride-sharers are

willing to wait by another 10–40 % total, VMT was reduced by 2.4 miles at a cost of

11.1 min of added service time per new shared-trip, and fleet size fell by just 42 SAVs,

indicating that this setting is likely too high to be worthwhile.

Increasing travel demand

The final scenario variations tested the impact of scaling the fleet to serve greater demand.

Assuming that such services prove successful in one or more cities and regions, demand for

SAVs and DRS may grow, along with fleet sizes. As noted above, with just 1.3 % of trips

served (and 2.3 % within the geofence), less than 5 % of all SAV VMT resulted in ride-

sharing. Increasing trip demands over the same geofenced area may generate economies of

density in trip matching, reducing overall VMT and the share of empty VMT.

To these ends, the total base travel demand was grown by factors of roughly 2 and 5, to

represent approximately 2.47 and 6.01 % of total regional trips, or 4.6 and 11.1 % of all

geofenced trips. The conventional vehicle replacement rate per SAV was assumed con-

stant, at 10:1, in order to determine travel implications outside of fleet sizing shifts, with

scenario outcomes shown in Table 2.

These results are consistent with those shown in Fagnant and Kockelman’s (2014a)

grid-based scenarios. With increased market share, conventional-vehicle replacement

should improve, as well as wait times and total service times. Moreover, a higher share of

the served population will find ride-sharing matches, resulting in greater VMT reductions

(as compared to a non-SAV fleet), even after accounting for unoccupied–(empty-) vehicle

relocations. With an even greater market share or more flexible ride-sharing travelers, total

fleet VMT may be reduced even further below that evident in today’s conventionally-

owned vehicle systems. Higher shares were not tested due to computer memory issues,

though these may be attempted via code changes in future work. It should be reiterated that

SAVs were not modeled to impact link-level travel speeds here. While net VMT changes

should be negligible in these scenarios (around 0.11 % or less), traffic and operating speeds

could be meaningfully impacted if SAV use reaches 20–50 % market share.

Recognizing day-to-day demand variation

To better appreciate the fleet operator’s financial perspective, and the year-long customer’s

experience, it is important to simulate day-to-day variations in travel demand. To

approximate a year’s variability, day-to-day variations in personal trips no longer than 50

miles were obtained from the 2009 NHTS (Federal Highway Administration 2009), over

the course of an entire year. The nation’s records yielded an average of 1953 person-trips

per day, while the state of Texas offered 294 person-trips per day (on average) and the

Dallas-Ft. Worth (DFW) metroplex offered 52. These trip records are provided by different

persons, every day; so there is great variability in the nature of the trips, that goes beyond

inter-regional variations (due to climate and local events, for example) and inter-day

variation (from Monday to Friday, and April to November, for example).

The Texas statewide data set was ultimately chosen since it likely represents the closest

variation one can expect in sizing central Austin’s SAV fleet. As described in Fagnant
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(2014), based on comparison with Salt Lake City traffic count data (which were available

for a series of 365 calendar days), the DFW-only NHTS sample was too small (and thus too

variable) to represent the day-to-day variability in total demand by tens of thousands of

year-long (day-to-day stable) SAV fleet members, even if some regional travel variations

across Texas may offset one another. (For example, low demand during a Saturday storm

in Houston could partly offset relatively high demand accompanying a football game in

Dallas-Ft. Worth on that same day.)

Average increases in household travel from the NHTS data for the top 5 % of days in

the survey year are 76 % in the DFW region alone, 28 % looking across the State of Texas,

and 14 % across the entire U.S., while the average decreases for the bottom 5 % of days

are -72, -33 and -23 % in those same regions, respectively. In comparing the traffic

count variations to those in the NHTS, the within-Texas variations appear reasonable,

while DFW’s day-to-day variations are too extreme to represent a single region’s actual

demand variations (Fagnant 2014).

Thus, NHTS travel data from the state of Texas were used to estimate seven distinctive

demand days. Accurately assessing this day-to-day variation is crucial in order to ensure

that the fleet is properly sized for the entire year, ensuring that services on particularly

high-demand days do not collapse as they struggle to keep up with demand. Two of the

days are designed to reflect the 18 highest- and 18 lowest-demand days in the year (i.e., the

top and bottom 5 % of days), while the other 5 days rely on the average VMT within the

five inner quintiles of the rest of the year (i.e., the other 90 % of days). Figure 3 shows how

these representative days compare to the cumulative distribution of the 365 days data

available in the 2009 NHTS’s Texas sample.

Optimal SAV fleet sizing

The above discussions, of fleet operations and travel demand variations, are key to operator

costs and system profitability. Fleet sizing can also be varied, with important consequences

for costs and customer experience. As shown in Fagnant and Kockelman (2014a, b), SAV

fleet size has direct implications for conventional vehicle replacement rates, as well as

system-wide VMT, traveler wait times, and life-cycle environmental impacts. Moreover,

operators will wish to size their fleets to maximize profits, while offering users a relatively

high level of service (to avoid demand losses and thereby revenue penalties).

With this motivation, a new framework was developed to determine an optimal fleet

size. $70,000 per-SAV purchase costs were assumed (representing $50,000 costs for AV

Table 2 SAV operational metrics when serving larger trip shares

% Trips served within geofence 2.3 % 4.6 % 11.1 %

# SAVs in fleet 1846 3640 9037

# Shared rides per day 5755 12,933 35,053

% Of shared VMT 4.5 % 5.3 % 5.9 %

% Extra travel 4.9 % 1.8 % -0.2 %

Average service time per person-trip (min.) 14.47 14.09 13.93

% Travelers waiting C 10 min. 0.77 % 0.09 % 0.02 %
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technology and another $20,000 for vehicle costs,4 with an additional $0.50 per-mile

operating costs (American Automobile Association 2012). Per-SAV capital costs were

annualized using the formula:

A ¼ P � i
1 � ð1 þ iÞ�N

ð3-3Þ

where A is the annualized SAV capital cost, P is the SAV purchase price, N is the expected

number of service years, and i is the discount rate. SAVs were assumed to have a 250,000

mile service life, consistent with the expected 7-year service life of Toronto, Canada taxis

[which travel over 248,000 miles in the average lifetime (Stevens et al. 2009)], though

SAVs may be serviceable longer, thanks to smoother automated driving loads.

Wait times were assessed a penalty, at 70 % of the average wage rate (Litman and Todd

2013), which is just over $23 per hour for the Austin area, as of May 2013 (Bureau of

Labor Statistics 2014). This implies that for every minute the average traveler spends

waiting, a 38.4 cent cost is incurred (by the traveler directly, and by the SAV provider

indirectly, as assumed here). While these wait penalties do not directly reflect discounted

fares that fleet operators may offer to travelers (unless, perhaps, the wait is excessive), wait

time is implicitly linked to demand. That is, with lower wait times, more travelers may opt

to use SAVs, thus strengthening overall demand; conversely, if wait times are often long,

demand may diminish. Therefore, for this analysis, fleet sizing was conducted as if real

wait costs are felt by the fleet provider, though they were removed when reporting the final

return on investment once the fleet size is determined.

TaxiFareFinder.com (2014) estimates Austin taxi travel to cost approximately $2.65 per

trip, as a flat or fixed fee, plus another $2.70 per mile, and then a 15 % tip on top of those

base costs. Assuming an average person- trip distance of 5.64 miles (from the SAV-served

trips desired of the population here, internal to the geofence), this works out to an average

of $20.56 for a one-way trip, or $3.65 per mile. Since SAVs may replace taxis with a more
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4 Boesler (2012) notes the U.S.’s top 27 selling vehicles sold for between $16,000 and $27,000. SAVs are
assumed here to be relatively compact cars or mid-size cars, so a $20,000 base price assumption was made
here.
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efficient and cost-effective system, an average $1 per trip-mile fare is assumed here, or

$5.64 in operator revenue for the average trip.

A series of simulations were thus run, with varying fleet sizes, using a Golden Sec-

tion Search optimization procedure (Shao et al. 2008). This procedure assumes functional

concavity (i.e., monotonically increasing until the maximum is reached, and then mono-

tonically decreasing for the remainder of the interval) and works as follows:

1. Boundary conditions for SAV fleet size (x1, x2) are first established (here x1 = 1500

and x2 = 2200 or 2500 SAVs) and evaluated to determine the expected profits (f(x1),

f(x2)) of each.

2. Two points are chosen (x3, x4) between these two extreme/boundary values and

evaluated (f(x3), f(x4)). To proceed, at least one of these new f(xi) values must be

greater than both f(x1) and f(x2).

3. If f(x3)[ f(x4), the fleet size corresponding to the maximum profit must lie on the

interval between (x1, x4), so (x1, x4) is established as the new boundary, with known

value f(x3) falling within this interval. Otherwise, if f(x4)[ f(x3), the new interval will

be (x3, x2), with value f(x4) lying inside.

4. A new fleet size value (x5) between the new boundary conditions is chosen, and

evaluated f(x5); and the process continues until an optimal fleet size is identified within

±5 SAVs.

See Fagnant (2014) for more details on this methodology and application.

Applying this method, an optimal fleet size of 2118 SAVs was estimated, suggesting an

8.7 conventional vehicles per 1 SAV replacement rate, and the average SAV serving 26.6

person-trips per day within this 12 mi 9 24 mi section of Austin. A secondary scenario

was also tested with (marginal) operating costs halved, to $0.25 per mile (to reflect possible

reductions in fuel usage and reduced vehicle wear due to smoother operation). This sig-

nificantly improved profits (from an IRR of 13.4 to 42.9 %), and resulted in a much smaller

fleet size, of just 1704 SAVs, equivalent to a 10.8 vehicle replacement rate. Figure 4 shows

how total (expected) annual return on investment for an SAV fleet operator varies with

fleet size in these two scenarios, before removing traveler wait costs (since the operator

likely will not pay these directly).
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It is also informative to note that total return on investment remained relatively stable in

this process, lying between 12.3 and 13.4 % in the base case ($0.50/mi.) scenario across

almost all fleet sizes,5 and between 38.8 and 43.0 % in the low-cost ($0.25/mi.) scenario,

even with substantial variations in fleet size (33 and 47 %, respectively). Table 3 shows

base scenario component costs for the boundary fleet values and the optimal 2118 SAV

fleet size, to further illuminate fleet sizing implications.

These results indicate that all fleet size scenarios result in similar outcomes due to very

similar per-trip mileage, high annual mileage (resulting in a high retirement/turnover rate

of vehicles), and relatively low wait times. Since mileage cost differences across fleet size

values are minimal (decreasing slightly with larger fleet size, due to fewer unoccupied

relocations), the main tradeoff becomes capital costs versus wait costs. As the IRR grows

larger, the disparity between capital costs in the various scenarios grows; so a smaller fleet

is preferred for the low-cost scenario, while a larger fleet is best for the base-case scenario.

If wait time costs are removed from the equation to reflect actual costs to be paid by the

operator, return on investment for the base-case scenario optimal fleet size rises from 13.4

to 19.4 %. As noted earlier, while smaller fleet sizes may increase profits further, they may

also result in lower demand levels, so an optimal fleet size of 2118 SAVs is recommended

here, for the base-case conditions.

Many factors may change these results, as shown in the lower-operating-costs scenario.

Since mileage costs do not change substantially with fleet size, smaller optimal fleet sizes

may be achieved by increasing fares, assuming constant demand. As such, neither the 8.7

nor the 10.7 replacement rate should be taken as a fixed optimal value. Rather, operators

should understand that an optimal SAV-conventional household vehicle replacement rate

in this type of context should be around 10-to-1 (though possibly somewhat lower, since

trips to destinations outside the geofence will likely have longer distances, on average), and

a methodology like the one used here may be employed to determine specific fleet sizes,

given a proper understanding of the underlying context. Other questions also arise that are

not directly answered here, like how competitive SAVs may be with household vehicle

ownership?

In addition to changing demand and fares, these contexts may vary by potentially

limiting SAV speeds, expanding the geofence into low trip intensity areas, or widening the

service area in general, which would result in longer average trips. In essence, these results

suggest that sizing the SAV fleet for an average day works relatively well for the rest of the

year, and sizable returns on investment are quite possible (or lower consumer prices with

enough competition), even when accounting for variations between high-demand and low-

demand days and higher per-SAV purchase costs.

Concluding remarks

Rising degrees of vehicle automation are expected to eventually have profound impacts on

our transportation systems, opening the way for a novel transportation mode, the SAV. The

results of this work suggest that DRS applications may be critical in limiting excess VMT

stemming from unoccupied vehicle relocations, by simultaneously pooling multiple per-

son-trips in the same vehicle. Under base conditions for 1.3 % of Austin trip making within

a 24 mi 9 12 mi geofence, with conservative DRS parameters, excess VMT may be cut

5 Wait costs were excessive with a fleet of just 1500 SAVs, eliminating almost all profit in the base-case
scenario.
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from 8.7 to 4.5 %; and, as trip-making intensity rises and DRS parameters are loosened,

greater ride-sharing and less relocation may actually reduce net VMT. DRS may also

greatly reduce wait times, particularly during the heaviest peak hour (from 9.0 to 4.5 min,

as simulated here). Average total service (wait, plus in-vehicle) time may also be improved

via DRS (from 15.0 to 14.7 min, as modeled here), even after non-direct routing time costs

and time spent picking up or dropping off other passengers is added. This investigation also

demonstrates how SAVs could be quite profitable: Assuming SAV purchase prices of

$70,000 and travel fares of $1 per trip-mile (less than a third of what Austin taxis charge),

and no competition, a fleet operator is simulated to achieve a substantial 19 % return on

his/her investment.

Ultimately, VMT impacts, conventional-vehicle replacement ratios, operator profits,

and many other outcomes depend heavily on implementation details. Market penetration,

relocation strategies, DRS assumptions, trip pricing decisions, geofence service areas, and

maximum SAV occupancies will probably have important impacts on all these outcomes.

This investigation points towards some clear broad outcomes that hold great relevance for

future planning and policy-making efforts, regardless of implementation details. An SAV

system on the scale envisioned here should lead to lower household vehicle ownership

rates, lower parking requirements, traveler cost savings, and significant operator profit

opportunities. Additionally, if cities and regions are to avoid some of the excess VMT

scenarios that can emerge under SAV (much like taxi) operations, DRS opportunities must

be appropriately incentivized.

This work provides a series of case study applications, simulation techniques, and

evaluation methods to anticipate and appreciate the potential impacts of AV adoption,

SAV applications, and DRS opportunities—and the relative influence of key variables in

such systems. The methods used and scenario outcomes discussed provide guideposts for

both innovators (who seek to implement a large-scale SAV fleet), as well as transportation

planners and policy makers (who must plan for their arrival).
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